Acta Crystallographica Section E

## **Structure Reports**

**Online** 

ISSN 1600-5368

# {1-[2-(Methylamino)ethyliminomethyl]naphthalen-2-olato}thiocyanatocopper(II)

## Han-Na Hou

Department of Chemistry, Hubei Institute of Education, Wuhan 430205, People's Republic of China

Correspondence e-mail: houhanna@163.com

## **Key indicators**

Single-crystal X-ray study T = 298 KMean  $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.047wR factor = 0.124 Data-to-parameter ratio = 17.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound,  $[Cu(C_{14}H_{15}N_2O)(NCS)]$ , is a mononuclear copper(II) complex, with two molecules in the asymmetric unit. The CuII ion is coordinated by one O and two N atoms of a Schiff base ligand, and by one N atom of a thiocyanate anion, forming a square-planar geometry.

Received 30 May 2006 Accepted 7 June 2006

## Comment

Copper(II) complexes derived from Schiff base ligands have been studied extensively due to their interesting structures and wide applications (Bhaduri, et al., 2003; Rospendowski & Smith, 1988; Dominguez-Vera et al., 1998; Hebbachi & Benali-Cherif, 2005; Butcher et al., 2003). As part of an investigation of the structures of Schiff base copper(II) complexes, the title mononuclear copper(II) complex, (I), is reported here.

Complex (I) is a mononuclear copper(II) compound, as shown in Fig. 1. The asymmetric unit consists of two molecules. Each Cu<sup>II</sup> ion is in a square-planar geometry and is fourcoordinated by one O and two N atoms of a Schiff base ligand, and by one N atom of a thiocyanate anion. The bond lengths and angles (Table 1) are within normal ranges and comparable to the values in other copper(II) complexes (Marek et al., 2003; Akitsu & Einaga, 2004; Ali et al., 2004).



The asymmetric unit of (I), showing the atom-numbering Displacement ellipsoids are drawn at the 30% probability level.

© 2006 International Union of Crystallography All rights reserved



**Figure 2**The crystal packing of (I), viewed along the *a* axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

In the crystal structure, adjacent molecules are linked through intermolecular  $N-H\cdots O$  hydrogen bonds (Table 2), forming dimers (Fig. 2).

## **Experimental**

2-Hydroxy-1-naphthaldehyde (1.0 mmol, 173.2 mg), *N*-methylethane-1,2-diamine (1.0 mmol, 74.1 mg), NH<sub>4</sub>NCS (1.0 mmol, 76.2 mg) and Cu(CH<sub>3</sub>COO)<sub>2</sub>·H<sub>2</sub>O (1.0 mmol, 199.3 mg) were dissolved in methanol (100 ml). The mixture was stirred at room temperature for 1 h to give a clear blue solution. After leaving the solution to stand in air for 13 days, blue block-shaped crystals were formed.

## Crystal data

| -                              |                                           |
|--------------------------------|-------------------------------------------|
| $[Cu(C_{14}H_{15}N_2O)(NCS)]$  | Z = 8                                     |
| $M_r = 348.90$                 | $D_x = 1.548 \text{ Mg m}^{-3}$           |
| Monoclinic, $P2_1/n$           | Mo $K\alpha$ radiation                    |
| a = 10.168 (1)  Å              | $\mu = 1.60 \text{ mm}^{-1}$              |
| b = 13.237 (1)  Å              | T = 298 (2)  K                            |
| c = 22.301 (2)  Å              | Block, blue                               |
| $\beta = 93.679 \ (1)^{\circ}$ | $0.22 \times 0.18 \times 0.17 \text{ mm}$ |
| $V = 2995.4 (5) \text{ Å}^3$   |                                           |
|                                |                                           |

## Data collection

| Bruker SMART CCD area-detector       | 22106 measured reflections             |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 6734 independent reflections           |
| $\omega$ scans                       | 5081 reflections with $I > 2\sigma(I)$ |
| Absorption correction: multi-scan    | $R_{\rm int} = 0.034$                  |
| (SADABS; Sheldrick, 1996)            | $\theta_{\rm max} = 27.5^{\circ}$      |
| $T_{\min} = 0.720, T_{\max} = 0.773$ |                                        |
|                                      |                                        |

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0641P)^2]$            |
|---------------------------------|----------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.047$ | + 0.9166P                                          |
| $wR(F^2) = 0.125$               | where $P = (F_0^2 + 2F_c^2)/3$                     |
| S = 1.03                        | $(\Delta/\sigma)_{\rm max} < 0.001$                |
| 6734 reflections                | $\Delta \rho_{\text{max}} = 0.80 \text{ e Å}^{-3}$ |
| 387 parameters                  | $\Delta \rho_{\min} = -0.26 \text{ e Å}^{-3}$      |
| H atoms treated by a mixture of |                                                    |
| independent and constrained     |                                                    |

**Table 1**Selected geometric parameters (Å, °).

| Cu1-N1    | 1.902 (3)   | Cu2-O2    | 1.908 (2)   |
|-----------|-------------|-----------|-------------|
| Cu1-O1    | 1.910(2)    | Cu2-N4    | 1.926 (3)   |
| Cu1-N3    | 1.942 (3)   | Cu2-N6    | 1.945 (3)   |
| Cu1-N2    | 2.040 (3)   | Cu2-N5    | 2.056 (3)   |
| N1-Cu1-O1 | 92.43 (9)   | O2-Cu2-N4 | 91.11 (10)  |
| N1-Cu1-N3 | 174.58 (11) | O2-Cu2-N6 | 91.12 (11)  |
| O1-Cu1-N3 | 91.11 (11)  | N4-Cu2-N6 | 177.33 (12) |
| N1-Cu1-N2 | 84.82 (11)  | O2-Cu2-N5 | 166.31 (12) |
| O1-Cu1-N2 | 164.29 (11) | N4-Cu2-N5 | 83.82 (11)  |
| N3-Cu1-N2 | 92.86 (13)  | N6-Cu2-N5 | 94.32 (12)  |
| -         |             |           |             |

**Table 2** Hydrogen-bond geometry (Å, °).

| $D-\mathrm{H}\cdots A$  | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D-\mathrm{H}\cdots A$ |
|-------------------------|----------|-------------------------|-------------------------|------------------------|
| N2−H2···O1 <sup>i</sup> | 0.91 (3) | 2.07 (2)                | 2.946 (4)               | 162 (4)                |
| N5−H5···S1              | 0.90 (3) | 2.78 (3)                | 3.481 (3)               | 135 (3)                |

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Atoms H2 and H5 were located in a difference Fourier map and refined isotropically, with N—H distances restrained to 0.90 (1) Å. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.97 Å, and with  $U_{\rm iso}({\rm H}) = 1.2$  or  $1.5 U_{\rm eq}({\rm C})$ .

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The author thanks the Hubei Institute of Education for funding this study.

## References

Akitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436-m438.
Ali, H., Khamis, N. A., Basirun, W. J. & Yamin, B. M. (2004). Acta Cryst. E60, m982-m983.

Bhaduri, S., Tasiopoulos, A. J., Bolcar, M. A., Abbound, K. A., Streib, W. E. & Christou, G. (2003). *Inorg. Chem.* **42**, 1483–1492.

Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

Butcher, R. J., Mockler, G. M. & McKern, O. (2003). *Acta Cryst.* E**59**, m1104–m1106.

Dominguez-Vera, J. M., Camara, F., Moreno, J. M., Colacio, E. & Stoeckli-Evans, H. (1998). *Inorg. Chem.* 37, 3046–3050.

Hebbachi, R. & Benali-Cherif, N. (2005). *Acta Cryst.* E**61**, m1188–m1190. Marek, J., Vančo, J. & Švajlenová, O. (2003). *Acta Cryst.* C**59**, m509–m511.

Rospendowski, B. & Smith, W. E. (1988). *Inorg. Chem.* 27, 4509–4511. Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.

Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Sheldrick, G. M. (1997b). SHELXTL. V5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.

refinement