Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Han-Na Hou

Department of Chemistry, Hubei Institute of Education, Wuhan 430205, People's Republic of China

Correspondence e-mail: houhanna@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.047$
$w R$ factor $=0.124$
Data-to-parameter ratio $=17.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
\{1-[2-(Methylamino)ethyliminomethyl]naph-thalen-2-olato\}thiocyanatocopper(II)

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right)(\mathrm{NCS})\right]$, is a mononuclear copper(II) complex, with two molecules in the asymmetric unit. The $\mathrm{Cu}^{\mathrm{II}}$ ion is coordinated by one O and two N atoms of a Schiff base ligand, and by one N atom of a thiocyanate anion, forming a square-planar geometry.

Comment

Copper(II) complexes derived from Schiff base ligands have been studied extensively due to their interesting structures and wide applications (Bhaduri, et al., 2003; Rospendowski \& Smith, 1988; Dominguez-Vera et al., 1998; Hebbachi \& BenaliCherif, 2005; Butcher et al., 2003). As part of an investigation of the structures of Schiff base copper(II) complexes, the title mononuclear copper(II) complex, (I), is reported here.

(I)

Complex (I) is a mononuclear copper(II) compound, as shown in Fig. 1. The asymmetric unit consists of two molecules. Each $\mathrm{Cu}^{\text {II }}$ ion is in a square-planar geometry and is fourcoordinated by one O and two N atoms of a Schiff base ligand, and by one N atom of a thiocyanate anion. The bond lengths and angles (Table 1) are within normal ranges and comparable to the values in other copper(II) complexes (Marek et al., 2003; Akitsu \& Einaga, 2004; Ali et al., 2004).

The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 30 May 2006
Accepted 7 June 2006

Figure 2
The crystal packing of (I), viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

In the crystal structure, adjacent molecules are linked through intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2), forming dimers (Fig. 2).

Experimental

2-Hydroxy-1-naphthaldehyde $(1.0 \mathrm{mmol}, \quad 173.2 \mathrm{mg}), \quad N$-methyl-ethane-1,2-diamine $(1.0 \mathrm{mmol}, \quad 74.1 \mathrm{mg}), \quad \mathrm{NH}_{4} \mathrm{NCS} \quad(1.0 \mathrm{mmol}$, $76.2 \mathrm{mg})$ and $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{mmol}, \quad 199.3 \mathrm{mg})$ were dissolved in methanol $(100 \mathrm{ml})$. The mixture was stirred at room temperature for 1 h to give a clear blue solution. After leaving the solution to stand in air for 13 days, blue block-shaped crystals were formed.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}\right)(\mathrm{NCS})\right]$
$M_{r}=348.90$
Monoclinic, $P 2_{1} / n$
$a=10.168$ (1) A
$b=13.237$ (1) \AA
$c=22.301$ (2) \AA
$\beta=93.679$ (1) ${ }^{\circ}$
$V=2995.4(5) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.720, T_{\max }=0.773
$$

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047\)
\(w R\left(F^{2}\right)=0.125\)
\(S=1.03\)
6734 reflections
387 parameters
H atoms treated by a mixture of independent and constrained refinement
```


$Z=8$

$D_{x}=1.548 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.60 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, blue
$0.22 \times 0.18 \times 0.17 \mathrm{~mm}$

22106 measured reflections 6734 independent reflections 5081 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.5^{\circ}$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0641 P)^{2} \\
&+0.9166 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.80 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.902(3)$	$\mathrm{Cu} 2-\mathrm{O} 2$	$1.908(2)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.910(2)$	$\mathrm{Cu} 2-\mathrm{N} 4$	$1.926(3)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.942(3)$	$\mathrm{Cu} 2-\mathrm{N} 6$	$1.945(3)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$2.040(3)$	$\mathrm{Cu} 2-\mathrm{N} 5$	$2.056(3)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$92.43(9)$	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{N} 4$	$91.11(10)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$174.58(11)$	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{N} 6$	$91.12(11)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$91.11(11)$	$\mathrm{N} 4-\mathrm{Cu} 2-\mathrm{N} 6$	$177.33(12)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$84.82(11)$	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{N} 5$	$166.31(12)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$164.29(11)$	$\mathrm{N} 4-\mathrm{Cu} 2-\mathrm{N} 5$	$83.82(11)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$92.86(13)$	$\mathrm{N} 6-\mathrm{Cu} 2-\mathrm{N} 5$	$94.32(12)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.91(3)$	$2.07(2)$	$2.946(4)$	$162(4)$
$\mathrm{N} 5-\mathrm{H} 5 \cdots \mathrm{~S} 1$	$0.90(3)$	$2.78(3)$	$3.481(3)$	$135(3)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.
Atoms H2 and H5 were located in a difference Fourier map and refined isotropically, with $\mathrm{N}-\mathrm{H}$ distances restrained to 0.90 (1) \AA. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The author thanks the Hubei Institute of Education for funding this study.

References

Akitsu, T. \& Einaga, Y. (2004). Acta Cryst. E60, m436-m438.
Ali, H., Khamis, N. A., Basirun, W. J. \& Yamin, B. M. (2004). Acta Cryst. E60, m982-m983.
Bhaduri, S., Tasiopoulos, A. J., Bolcar, M. A., Abbound, K. A., Streib, W. E. \& Christou, G. (2003). Inorg. Chem. 42, 1483-1492.
Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Butcher, R. J., Mockler, G. M. \& McKern, O. (2003). Acta Cryst. E59, m1104m1106.
Dominguez-Vera, J. M., Camara, F., Moreno, J. M., Colacio, E. \& StoeckliEvans, H. (1998). Inorg. Chem. 37, 3046-3050.
Hebbachi, R. \& Benali-Cherif, N. (2005). Acta Cryst. E61, m1188-m1190.
Marek, J., Vančo, J. \& Svajlenová, O. (2003). Acta Cryst. C59, m509-m511.
Rospendowski, B. \& Smith, W. E. (1988). Inorg. Chem. 27, 4509-4511.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. V5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

